

LA TRANSFORMATION DIGITALE 🖐 DU MONDE DE L'ÉNERGIE

THOMAS KARAOUZENE

40% of the mondial energy consumption

40% of the mondial energy consumption

40% of the mondial energy consumption

RAIZEN

Power Laws: Forecasting Energy Consumption

KAIZEN

Quick FactsPARTICIPANTS355NO. OF
ENTRIES170PRIZE€23,000

Power Laws: Forecasting Energy Consumption

Quick FactsPARTICIPANTS1,034NO. OF
ENTRIES1,332PRIZE€23,000

TECH

WEEK

KAIZEN

Why?

- Critical role in energy efficiency
- Optimize operations of chillers, boilers and energy storage systems
- Baseline for flagging potentially wasteful discrepancies

⇒ Forecasting the use of the electrical energy is the backbone of effective operations

Forecasting building energy consumption

Competition Data

- Energy consumption historic for ~200 buildings
- Temperature

Forecasting building energy consumption

Competition Data

- Energy consumption historic for ~200 buildings
- Temperature

Competition Objective

 Forecast Energy consumption through different horizons

RAIZEN

Problem formulation

Problem formulation

Feature engineering

Feature engineering

Feature engineering

Engineered features

Problem formulation

Final model

Boosted trees

DB-Z.COM

Boosted trees Decision trees

Boosted trees Decision trees

TECH

WEEK

Boosted trees Decision trees

TECH

WEEK

Boosting

Boosting

Boosting

TECH

WEEK

RAIZEN

Power Laws: Forecasting Energy Consumption

KAIZEN

- Improve the state of the Art
- Create a community
- Provide a solution to a typical Energy problematic

This solution can now be used in other context

Why?

- Flexibility in energy management is essential for secure supply and increasing the penetration of renewable sources.
- Energy storage and local production can increase smart building flexibility.
- Time of use tariffs can incite use of energy when it is the most available.
- ⇒ Algorithms can help battery charging systems to be as efficient as possible

Quick FactsPARTICIPANTS355NO. OF
ENTRIES170PRIZE€23,000

Competition Description

Competition Data

- Actual Consumption and Production (for 11 buildings)
- Forecast for next 24h
- Grid energy price (sell and buy)

Competition Description

Competition Data

- Actual Consumption and Production (for 11 buildings)
- Forecast for next 24h
- Grid energy price (sell and buy)

Competition Objective

 Plannify a battery usage to save money

Competition Results

Performance Metric

 $Score = rac{moneyNoBatt - moneySpent}{abs(moneyNoBatt)}$

where

- *moneyNoBatt*: is the money spent if the site do not have a battery
- *moneySpent*: is the money spent with a battery controlled by the tested algorithm

Competition Results

Performance Metric

 $Score = rac{moneyNoBatt - moneySpent}{abs(moneyNoBatt)}$

where

- *moneyNoBatt*: is the money spent if the site do not have a battery
- *moneySpent*: is the money spent with a battery controlled by the tested algorithm

Best Competition score: drives **19%** savings with a battery.

 $\underset{[\operatorname{grid}_t]_{t\in[0,24h]}}{\operatorname{minimize}}$

24h $\sum_{t=0} \operatorname{grid}_t imes \operatorname{price}_t$

 $\mathop{ ext{minimize}}_{[ext{grid}_t]_{t\in[0,24h]}}$

subject to

 $\operatorname{grid}_t = \operatorname{conso}_t - \operatorname{pv}_t - \operatorname{battery}_t$

 $egin{aligned} & ext{minimize} \ & [ext{grid}_t]_{t\in[0,24h]} \ & ext{subject to} \ & t\in[0,24h] \end{aligned}$

```
\sum_{t=0}^{24h} \operatorname{grid}_t \times \operatorname{price}_t
```

```
	ext{grid}_t = 	ext{conso}_t - 	ext{pv}_t - 	ext{battery}_t
		ext{battery}_t 	imes 
ho < 	ext{max_power_battery}
		ext{0} < 	ext{total_battery}_t + 	ext{battery}_t < 	ext{max_capacity_battery}.
```


Issue: Future consumption and prediction are unknown. We only have forecastings.

Forecasting Error

TECH

WEEK

RAIZEN

Time Series — Consumption — Production

Scenario based stochastic programming

24h 2 $\sum \sum \operatorname{grid}_t^q imes \operatorname{price}_t$ $\overline{t=0} \ q=-2$

Scenario based stochastic programming

Scenario based stochastic programming

 $egin{array}{l} \mininimize \ [{
m grid}_t^q]_{t\in [0,24h],q\in [-2,2]} \ {
m subject to} \ t\in [0,24h] \ q\in [-2,2] \ \end{array}$

 $\sum_{t=0}^{24h} \sum_{q=-2}^{2} \operatorname{grid}_{t}^{q} \times \operatorname{price}_{t}$ $\operatorname{grid}_{t}^{q} = \operatorname{conso}_{t}^{q} - \operatorname{pv}_{t}^{q} - \operatorname{battery}_{t}$ $\operatorname{battery}_{t} \times \rho < \operatorname{max_power_battery}$ $0 < \operatorname{total_battery}_{t} + \operatorname{battery}_{t} < \operatorname{max_capacity_battery}.$

Results

Scores

Method	Percentage of saving with a battery
Our method	19,6 %
1 st competition method	19,4 %
2 nd competition method	19,2 %
3 rd competition method	19,1

Results

Scores

Method	Percentage of saving with a battery
Our method	19,6 %
1 st competition method	19,4 %
2 nd competition method	19,2 %
3 rd competition method	19,1

Want to go further ? https://github.com/kaizen-solutions/power-laws-optimization

- Algorithms driving 19% of savings with a battery
- Algorithms and comparison code are on github

Quick Facts

355	PARTICIPANTS
170	NO. OF ENTRIES
€23,000	PRIZE

Conclusion

Business needs

- Business context
- True dataset

Conclusion

Business needs

- Business context
- True dataset

Open Sources

- Understand
 Solutions
- Formation

OpenDataSoft

Conclusion

Business needs

- Business context
- True dataset

Open Sources

- Understand
 Solutions
- Formation

OpenDataSoft

Continuous Improvement

- Compare with existing
- Community

Any questions ?

Problem formulation

